INTERNATIONAL A LEVEL

Statistics 3

Exercise 6A

$1 \mathrm{H}_{0}$: There is no difference between the observed and expected distributions.
H_{1} : There is a difference between the observed and expected distributions.
2 a H_{0} : The observed data are drawn from a discrete uniform distribution. (The dice is fair.)
H_{1} : The observed data are not drawn from a discrete uniform distribution. (The dice is not fair.)
b The observed and expected results are:

Number, n	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	27	33	31	28	34	27
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	30	30	30	30	30	30
$\frac{\left(\boldsymbol{O}_{\boldsymbol{i}}-\boldsymbol{E}_{i}\right)^{2}}{\boldsymbol{E}_{\boldsymbol{i}}}$	0.3	0.3	0.033	0.133	0.533	0.3

$X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=1.6$
3 a H_{0} : The observed data are drawn from a discrete uniform distribution.
H_{1} : The observed data are not drawn from a discrete uniform distribution.
b If the distribution of students is uniform then each year group would be expected to have:

$$
\frac{750}{5}=150 \text { students }
$$

c The observed and expected results are:

Year	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	190	145	145	140	130
Expected, $\boldsymbol{E}_{\boldsymbol{i}}$	150	150	150	150	150
$\frac{\left(\boldsymbol{O}_{\boldsymbol{i}}-\boldsymbol{E}_{i}\right)^{2}}{\boldsymbol{E}_{i}}$	10.667	0.167	0.167	0.667	2.667

$X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=14.33$
4 a The observed and expected results are:

Mutation present	Yes	No
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	117	43
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	120	40

b $\quad \mathrm{H}_{0}$: The underlying probability of 'Yes' is 0.75 .
H_{1} : The underlying probability of 'Yes' is not 0.75 .

INTERNATIONAL A LEVEL

Statistics 3

4 c $X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{3^{2}}{120}+\frac{3^{2}}{40}=0.3$
5 a The observed and expected results are:

Result	H	T
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	28	22
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$ for fair coin	25	25
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$ for biased coin	30	20

b For fair coin:

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{3^{2}}{25}+\frac{3^{2}}{25}=0.72
$$

For biased coin:

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{2^{2}}{30}+\frac{2^{2}}{20}=0.33
$$

c The value of X^{2} is greater for the fair coin so it is more likely that John has been using the biased coin.

6 The observed and expected results are:

BMI profile	Underweight	Normal	Overweight	Obese
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$ for men	4	70	80	46
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	4	70	72	54
$\frac{\left(\boldsymbol{O}_{\boldsymbol{i}}-\boldsymbol{E}_{\boldsymbol{i}}\right)^{2}}{\boldsymbol{E}_{\boldsymbol{i}}}$	0	0	0.889	1.185
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$ for women	6	81	65	48
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	4	70	72	54
$\frac{\left(\boldsymbol{O}_{\boldsymbol{i}}-\boldsymbol{E}_{\boldsymbol{i}}\right)^{2}}{\boldsymbol{E}_{\boldsymbol{i}}}$	1	1.729	0.681	0.667

For men:

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=2.074
$$

For women:

$$
X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=4.076
$$

The men have a lower X^{2} statistic so more closely match the English distribution.

